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The small G proteins of the ARF family are key regulators of
membrane dynamics. Many functions of ARF proteins in cells
are being revealed by studies of their regulators and effectors.
Significant progress has been made over the past year, with
the identification of a surprisingly large family of novel ARF
GTPase-activating proteins. In addition, two new classes of
effectors, the PIP kinases and a novel family of monomeric
coat-like proteins have been discovered. 
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Abbreviations
ARF ADP-ribosylation factor
ARNO ARF nucleotide-binding site opener
ASAP1 ARF GAP containing SH3, ANK repeat and PH domains 1
BFA brefeldin A
BIG brefeldin A-inhibited GEF
COPI coat protein complex I
GAP GTPase-activating protein
GBF1 Golgi BFA resistance factor 1
GEF guanine nucleotide exchange factor
GGA Golgi-localizing, gamma-adaptin ear homology domain 

ARF-binding protein
GRK G-protein-coupled receptor kinase
GRP1 general receptor for phosphoinositides 1
MDCK Madin-Darby canine kidney
mw molecular weight
myrARF1 myristoylated ARF1
PH pleckstrin homology
PI phosphoinositide
PIP phosphatidylinositol phosphate
PIP2 phosphatidylinositol 4,5-bisphosphate
PIP3 phosphatidylinositol 3,4,5-triphosphate
PLD phospholipase D
PM plasma membrane
TGN trans-Golgi network
VHS Vps27, Hrs and STAM domain

Introduction
ADP-ribosylation factors (ARFs) are small (approximately
20 kDa) guanine-nucleotide-binding proteins that regulate
membrane traffic and organelle structure in eukaryotic cells.
In general, the inactive GDP-bound form of ARF is soluble,
although it can associate weakly with membranes, whereas
the active GTP-bound form binds tightly to the membrane.
ARFs function on membrane surfaces where they encounter
their effectors and regulators, the guanine nucleotide
exchange factors (GEFs) and GTPase-activating proteins
(GAPs). ARF effectors include lipid-modifying enzymes and
cytosolic coat complexes (such as COPI) that are recruited
onto membranes by ARF-GTP. Hence, ARF activation leads

to changes in both the lipid and protein composition of the
membrane on which it is localized; changes which in turn
result in modulation of membrane structure and function. 

ARF proteins are highly conserved and have been found in
all eukaryotic organisms examined. Mammalian ARF pro-
teins are divided into three classes: Class I (ARF1–ARF3),
Class II (ARF4 and ARF5) and Class III (ARF6). In the
yeast Saccharomyces cerevisiae, there are three ARF proteins.
Arf1 and Arf2 are functionally interchangeable, and yeast
cells require at least one of these proteins for viability.
Yeast Arf3 is not essential for growth and probably corre-
sponds to mammalian ARF6. Both Drosophila melanogaster
and Caenorhabditis elegans have at least one orthologue of
each of the three classes of mammalian ARFs.

Class I ARFs are involved in trafficking in the ER–Golgi and
endosomal systems, and their functions have been exten-
sively studied (for reviews see [1–4]). ARF1 binding to
endosomal membranes is regulated by endosomal pH, which
explains the pH dependence of COPI binding to endosomes
[5•]. The Class III ARF, ARF6, functions exclusively in the
endosomal–plasma membrane system. ARF6 is involved in
endosomal recycling to the plasma membrane (PM), in reg-
ulated secretion, and in coordinating actin cytoskeleton
changes at the PM (see [1]). ARF6 is present at the apical
surface of MDCK cells, where it plays a role in modulating
clathrin endocytosis ([6•]; Mostov et al., pp 483–490). ARF6
has also been implicated in Fc-mediated phagocytosis in
macrophages [7] and in insulin stimulation of adipsin secre-
tion [8] and Glut4 translocation [9]. By contrast, virtually
nothing is known about the functions of the class II ARFs.

Guanine nucleotide exchange factors
All ARF GEFs identified to date possess a Sec7 domain, a
module of approximately 200 amino acids that is sufficient to
catalyze exchange of GDP for GTP on ARF in vitro
(Figure 1). The Sec7 family of proteins has been reviewed
recently [10,11], so we will briefly highlight studies pub-
lished over the last year. The high mw ARF GEFs of the
Gea/GBF/GNOM and Sec7/BIG subfamilies function in the
ER–Golgi system, whereas the ARNO/cytohesin/GRP and
EFA6 subfamilies function primarily in the endosomal–PM
system. The yeast GEF Syt1 represents a novel subfamily
[12•]. The fungal metabolite brefeldin A (BFA), known to
disassemble the Golgi complex and block secretion, directly
inhibits some of the ARF GEFs, including the majority of
the large ARF GEFs, but has little effect on the activity of
the low mw GEFs (see Figure 1). The target of BFA is an
ARF–GDP–GEF reaction intermediate that BFA stabilizes,
thus blocking the cycle of activation of ARF [13,14]. 

Membranes play an essential role in ARF activation. ARF
must first undergo a lipid-mediated conformational
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switch before it can form a productive complex with a
membrane-associated GEF [15•]. Hence, ARF activation
takes place after both the GEF and its target ARF have
been localized to membranes. All ARF GEFs identified
to date are soluble proteins that are peripherally associat-
ed with membranes. BIG1, BIG2 and GBF1, high mw
GEFs, are all localized to the Golgi apparatus in mam-
malian cells [14,16•,17•]. An amino-terminal fragment of
human BIG1 localizes to the Golgi, indicating that this
portion of the protein has membrane-targeting informa-
tion [14]. Yeast Sec7 localization to membranes is
important for transport in the ER–Golgi system [18]. The
GNOM/Emb30 ARF GEF of Arabidopsis thaliana is nec-
essary for polarized PM localization of the auxin efflux
carrier PIN1 [19•]. 

The low mw subfamily of ARF GEFs are involved in sig-
nalling pathways downstream of PI 3-kinases [20, 21], in
actin cytoskeleton remodelling [22] and in integrin signalling

[23•]. All ARNO/cytohesin/GRP family members contain a
pleckstrin homology (PH) domain that mediates membrane
localization via interaction with specific polyphosphoinosi-
tides and an adjacent carboxy-terminal polybasic domain that
cooperates with the PH domain to enhance membrane bind-
ing. Membrane binding of ARNO is negatively regulated by
PKC-mediated phosphorylation of a serine residue within
this polybasic domain [24•]. 

A key question that is still difficult to answer in vivo is the
specificity of the different GEFs for the different ARFs. In
several in vitro systems, ARNO, cytohesin-1 and GRP1 cat-
alyze exchange more efficiently on class I ARFs than
members of the other classes (see [10]). However, in vivo,
ARNO and GRP1 colocalize with ARF6 and play an impor-
tant role in ARF6 activation [21,22,25•]. A new member of
this family, cytohesin-4, efficiently catalyzes exchange on
ARF1, and to a lesser extent on ARF5 in vitro, but it is inac-
tive towards ARF6 [26]. The situation is much clearer for
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The Sec7 family of ARF GEFs. The black box represents the Sec7
domain, which catalyzes GTP/GDP exchange on ARF. The DCB
domain (for dimerization and cyclophilin binding, grey) mediates
interactions between GNOM monomers and also directly binds to the
cyclophilin Cyp5 [67]. The PH domain (PH, vertical stripes) and coiled-
coil regions (CC, diagonal stripes) of the lower mw GEFs are

indicated. The solid bar following some PH domains designates the
polybasic region. EFA6 contains proline-rich regions designated ‘pr’.
Brefeldin A (BFA) inhibits the in vitro ARF exchange activity of certain
GEFs (indicated ‘Sensitive’) but not of others (indicated ‘Resistant’).
The major cellular localization of each GEF as determined by
immunofluorescence is indicated. ND, not determined.



EFA6, which activates ARF6 more efficiently than ARF1
in vitro and is involved (like ARF6) in endosome–PM recy-
cling and actin cytoskeleton remodelling [27].

GTPase-activating proteins
GAPs stimulate ARF-bound GTP hydrolysis and, hence,
return ARF to the inactive GDP-bound state. The timing
of GAP activity is critical for the function of GTPases, and
in some cases, GAPs can participate in effector functions.
During the past year, many new ARF GAP proteins have
been identified (see [28]). These new ARF GAPs are
multi-domain proteins that were identified, in many cases,
as binding partners of signal transduction molecules
(Figure 2). All of these proteins share a common GAP
domain of 70 amino acids, which includes a zinc finger
motif of CXXCX(16-17)CXXC (where C is cysteine and X
is any amino acid) that is critical for GAP activity [29].

In addition to the zinc finger, all ARF GAPs have a con-
served arginine within the GAP domain. Mutation of this
arginine to lysine results in a 100,000-fold decrease in
GTPase activity for ASAP1 [30•] and for its close relative,
PAPb [31•], indicating that this arginine is essential for GAP
activity and suggesting an arginine finger mechanism for
GTP hydrolysis. A recent crystal structure of the GAP and
ankyrin repeat domains of PAPb reveals that this arginine is
positioned on the surface of the molecule near several

hydrophobic residues [31•]. Mutation of these adjacent
hydrophobic residues also impairs GAP activity, suggesting
that this region may represent the ARF interaction site
[31•]. However, a crystal structure of ARF GAP1 complexed
to ARF1-GDP indicates a different site of interaction
between ARF and GAP [32], distant from this critical argi-
nine. Further studies will be needed to resolve the
discrepancy between the two proposed ARF interaction
sites and mechanisms of catalysis. 

Goldberg ([32]; see also update) provides evidence that the
effector COPI complex may participate in the GAP reac-
tion of ARF GAP1. This is in line with a general model
proposed by Schekman and colleagues whereby coat com-
plexes include GAP activity that would be regulated by
cargo molecules after coat recruitment to membranes [33].
Evidence now exists for cargo regulation of ARF hydroly-
sis through COPI at the Golgi [34•] and by the mannose
6-phosphate receptor at the TGN [35]. 

ARF GAP1, the first GAP for ARF to be cloned, is localized
to the Golgi complex in mammalian cells where it acts on
ARF1 [29]. Moderate overexpression of ARF GAP1 in cells
results in increased GTP hydrolysis and shorter residency
time of ARF1 on the Golgi complex [36•]. Higher levels of
overexpression result in phenotypes characteristic of the
loss of active ARF1 at the Golgi, as induced by either BFA
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Schematic representation of the ARF GAP family. Gcs1 and Glo3
are from S. cerevisiae; the others are all mammalian proteins. All
proteins share homology in the GAP domain (black) that contains a
critical zinc finger motif. A number of the GAPs shown also have a
PH domain (vertical stripes); these GAPs have been referred to as
centaurins. There are many more centaurin sequences in the
databases that have yet to be characterized. Ankyrin repeats
(AR, grey) and src homology 3 (SH3) domains (horizontal stripes)

are indicated. The ARF substrate specificities reported are from
in vitro assays. Centaurin a was identified as a PIP3-binding protein;
ASAP as an interacting partner with SH3 domains of Src; and PAP
as an interacting partner with the tyrosine kinase Pyk2. Git1 and Git2
are identical to Cat1 and Cat2, identified independently by
interactions with GRK and Cool-Pix, respectively. The method used
to establish the indicated interactions is as follows: *biochemical;
†two-hybrid; ‡yeast genetic. ND, not determined. 



treatment or expression of the GTP-binding-defective
ARF1T31N mutant [37]. ARF GAP1 can be recruited to
Golgi membranes by the KDEL receptor Erd2, suggesting
that GAP recruitment may be involved in retrograde trans-
port back to the ER stimulated by KDEL proteins [36•,37].

In yeast, the two ARF GAPs Gcs1 and Glo3 have been
implicated in retrograde, Golgi-to-ER, transport [38•].
Glo3 was identified independently as a Golgi-to-ER
retrieval (ret) mutant in yeast, indicating a role in retrieval
of KKXX-bearing ER resident proteins after they escape
into the Golgi [39]. Moreover, the importance of GAP-
mediated GTP hydrolysis on ARF is underscored by
recent observations that vesicles generated in vitro in the
presence of GTP contain a higher concentration of cargo
proteins than those prepared with GTPgS or the constitu-
tively active ARFQ71L [40•,41•]. 

A striking parallel to the observation that ARF-GAP1 is
recruited to the Golgi by Erd2, a seven-pass transmem-
brane receptor, is that a peripheral ARF GAP, Git1, is
recruited to G-protein-coupled receptors (also a seven-pass
transmembrane proteins) at the PM. Git1 was isolated as a
binding partner of G-protein-coupled receptor kinases
(GRKs) [42], which regulate receptor internalization fol-
lowing ligand stimulation. Git1 is a PIP3-stimulated GAP
for all ARFs including ARF6 [43•]. Git1 overexpression
specifically inhibits internalization of G-protein-coupled
receptors that are normally internalized via clathrin-facili-
tated endocytosis [44•]. These observations on ARF GAP1
and Git1 suggest that some ARF GAPs may be regulated
by seven-pass transmembrane receptors to influence selec-
tive membrane trafficking pathways (see also update).

ASAP1, the first non-Golgi ARF GAP to be characterized,
localizes to focal adhesions and cycles along with other
focal adhesion proteins, such as paxillin, into cortical actin
ruffles, which are generated in response to growth fac-
tors [30•]. Furthermore, overexpression of ASAP1 inhibits
cell spreading and ruffling, and this inhibition is depen-
dent upon the GAP activity of ASAP1 [30•]. Several other
ARF GAPs have been identified through interactions with
focal adhesion proteins, including Pkl and Cat1/2, which
interact with paxillin [45•] and Cool/PIX (GEFs for
Cdc42) [46•], respectively. The presence of these ARF
GAPs in focal adhesions may be linked to the observation
that ARF1-GTP stimulates recruitment of paxillin from a
juxtanuclear region to focal adhesions [47]. As ARF6 has
also been implicated in the cortical actin rearrangements
associated with cell spreading and membrane ruffling, this
suggests that several ARFs and GAPs at the PM coordinate
membrane traffic and actin structures. Interestingly, the
yeast GAP Gcs1 regulates the actin cytoskeleton in vivo,
and in vitro it binds to actin directly [48•]. 

Effectors
Increasing attention is being paid to the roles of ARF in
lipid modification. In yeast, the putative aminophospholipid

translocase Drs2 plays an important role in ARF-mediated
clathrin-coated vesicle formation at the TGN [49•]. Perhaps
this is through direct effects on lipid-bilayer composition
[49•]. An exciting development over the last year has been
the identification of a new class of lipid-modifying enzymes
as ARF effectors: the PI(4)P 5-kinases. This finding is par-
ticularly interesting in light of studies demonstrating a role
for PI(4,5)P2 (PIP2), and the enzymes responsible for its
synthesis, in trafficking steps at the Golgi and at the PM [3].
ARF1, ARF5 and ARF6, which represent all three classes of
ARFs, activate mouse PI(4)P 5-kinase a in vitro [50•]. At the
PM, ARF6 colocalizes with mouse PI(4)P 5-kinase a on the
membrane ruffles induced by aluminum fluoride treatment
or EGF stimulation [50•]. At the Golgi complex, PI 4-kinase
b and an unidentified PI(4)P 5-kinase activity are recruited
to Golgi membranes by activated ARF1, leading to an
increase in the production of PIP2 [51•]. In addition, recom-
binant PI(4)P 5-kinase stimulates PIP2 production on Golgi
membranes in the presence of ARF1 [52•]. A yeast PI 4-
kinase b homologue, Pik1, shows genetic interactions with
ARF and is required for transport pathways from the Golgi,
indicating a conserved role for these lipid kinases in Golgi
function [53]. 

As members of all classes of ARF can stimulate PI(4)P
5-kinase, this lipid-modulating function is likely to be a
general consequence of ARF activation. PIP2 can, in turn,
stimulate the activity of some ARF GAPs [54], thus creat-
ing a negative-feedback loop to turn off ARF and PIP2
production. PIP2 is an important membrane lipid that
influences numerous events in the cell, in addition to
membrane traffic, including actin dynamics and signalling
cascades at the plasma membrane [55]. Hence, a funda-
mental role of ARF may be to coordinate membrane
dynamics and other cellular functions through its interac-
tion with lipid kinases. 

Another exciting recent advance is the discovery of a new
class of ARF effectors: the GGA proteins (Golgi-localizing,
gamma adaptin ear homology domain, ARF-binding pro-
teins). Boman et al. [56•] identified GGA1 and GGA2 in a
yeast two-hybrid screen using the constitutively activated
Q71L mutant of ARF3. These two proteins, along with a
third, GGA3, were also identified in the gene data banks by
their homology to the ear region of g-adaptins [57•,58•].
Unlike the known coats that are part of oligomeric com-
plexes, the GGA proteins are monomeric when purified
from the cytosol [57•,58•]. Overexpression of any one of the
GGA proteins perturbs trafficking of TGN-resident pro-
teins, releases AP-1/clathrin from membranes and, at high
levels of overexpression, releases the COPI coat from Golgi
membranes [56•–58•]. There are two yeast homologues that
have an overlapping function in transport from the TGN to
the vacuole/lysosome [57•,58•]. The GGA proteins all have
an amino-terminal VHS (Vps27, Hrs and STAM) domain,
followed by the GAT (GGA1 and TOM proteins) region,
and, at the extreme carboxyl terminus, the g-adaptin homol-
ogy domain [56•–58•]. The two yeast proteins have the
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same domain organization and a high overall level of
sequence similarity, suggesting a conserved function
[57•,58•]. The GAT domain binds ARF-GTP directly and is
responsible for localization of the GGA proteins to the TGN
[57•]. Whether the GGAs form part of a novel coat or regu-
late the assembly of other coats remains to be established. 

Analyses of mutations in class I ARFs have revealed that
regions important for coatomer recruitment to membranes
do not coincide with those for activation of phosphlipase D
(PLD), and hence, COPI coat recruitment and PLD stim-
ulation by ARF can be uncoupled [59,60•]. Although coat
recruitment to membranes is an important consequence of
Class I ARF activation [4,61], recent work has underscored
the importance of other effector functions. Both Golgi and
endosome in vitro transport assays are blocked by ARF-
GTPgS, even in the absence of coat protein complexes in
the assays [62•,63•]. Candidates for other effectors are
PLD, PIP kinases (see above), arfaptin1 and
aftaptin2/POR1 (see [1]). Two other potential effectors,
specific for class I ARFs, are the kinesin-like protein
MKLP1 [64] and the PDZ-domain-containing PICK1 pro-
tein [65]. Arfophilin is another recently identified potential
ARF effector, which interacts specifically with activated
ARF5, a class II member [66]. 

Conclusion
Over the past year, the identification of novel regulators and
effectors for ARF GTPases has begun to reveal their broad
range of functions. An emerging theme is the importance of
ARF in generating specific lipid modifications and in coor-
dinating membrane dynamics and actin function. For both
the GEFs and the GAPs defining their ARF specificity,
localization and regulation will be critical for understanding
how ARFs regulate membrane dynamics within the cell. 

Update
Recent work has implicated ARF6 and its GEF, ARNO, in
desensitization (internalization) of the luteinizing hor-
mone (LH)/choriogonadotropin receptor [68]. The results
suggest that LH binding to this seven-pass transmembrane
receptor would activate an ARF6 GEF such as ARNO,
which in turn would activate ARF6, leading to increased
binding of b-arrestin to the receptor [68]. These results
provide further evidence of coordinated regulation of ARF
with seven-pass transmembrane receptor signalling path-
ways and, in particular, mirrors the inhibition of receptor
internalization observed for Git1 overexpression, a GAP
for ARF6 [44•]. This work, in addition to another recent
paper demonstrating that ARNO activates ARF6 in chro-
maffin cells [69], also supports the idea that ARNO can act
as a GEF for ARF6 in vivo. 

Some questions exist as to the role of COPI in ARF GAP1-
stimulated GTP hydrolysis. Szafer et al. [70] found that
COPI does stimulate GTP hydrolysis on truncated, non-
myristoylated ARF1 as observed by Goldberg [32,34•], but
that when full-length myrARF1 is used as a substrate in

the presence of phospholipid micelles, no COPI-stimula-
tion of GAP activity is observed. These new observations
do not preclude a role for COPI in modulating the ARF
GTPase cycle. Ultimately, however, the physiological roles
of ARF GAP1, COPI, and cytoplasmic tails of cargo recep-
tors on the ARF-GTP-hydrolysis step will have to be
assessed on membrane surfaces where ARF-GTP resides. 
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